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ABSTRACT

A straightforward synthesis of fully substituted β-carbolines via Brønsted acid promoted cyclizations of r-indolyl propargylic alcohols with
nitrones is described. The use of nitrones bearing alkenyl or electron-rich aryl groups as the R4 substituent dramatically switches the reaction
pathway to afford tetrasubstituted alkenes and amines, which is assumed to proceed through a rearrangement reaction involving N�O bond
cleavage and 1,2-migration of the R4 group to an adjacent nitrogen atom.

β-Carbolines, including its reduced derivatives, repre-
sent a large groupof biologically active indole alkaloidswide-
spread in nature.1 For example, Jadiffine2 and Neonaucleo-
side C3 were isolated fromVinca difformis andNeonauclea
sessilifolia, respectively. Lavendamycin is a naturally oc-
curring antitumor antibiotic, which possesses cytotoxic
properties and exhibits significant activity against topo-
isomerases (Figure 1).4 β-Carbolines also act as useful

intermediates for natural product synthesis.5 As a con-
sequence, much attention has been paid to the synthesis
of β-carboline derivatives.6 The most common strategy is
through the Pictet�Spengler reaction.7 Others include,
for examples, ring derivatizations,8 metal or Lewis acid
catalyzed intramolecular nucleophilic cyclization at the
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C-3 position of indole,9 copper-catalyzed C�N bond
coupling reactions,10 Ru-catalyzed [2 þ 2 þ 2] cycloaddi-
tionof an electron-deficient nitrile to an alkynylynamide,11

etc. Nevertheless, the development of straightforward
methodology that allows the formation of densely sub-
stituted β-carbolines still remains an important objective.
We have recently reported a series of gold-catalyzed
cascade transformations of indolyl tethered alkynes,12

such as cascade Friedel�Crafts/hydroarylation of indoles
with (Z)-enynols,12a 1,5-indolemigration reactions,12b and
deacylative cycloisomerization of 3-acylindole/ynes12c into
carbazole derivatives. On the other hand, recent research
demonstrated that nitrones could serve as a satisfactory
oxidant for redox reactions with cleavage of a weak N�O
bond in gold-catalyzed reactions, leading to an oxygen-
atom transfer to alkynes.13 We envisioned that the use of
nitrone as a nucleophile to attack the alkyne moiety of
indole/ynes might initialize new types of cascade reac-
tions. Along this line, we discovered that fully substituted
dihydro-β-carbolines could be constructed conveniently
via tandem reactions of R-indolyl propargylic alcohols
with nitrones promoted by Lewis or Brønsted acids
(Scheme 1). Herein we’d like to describe this new protocol
to β-carbolines.

In light of the efficient activation of alkynes by gold
catalysts, we first investigated the model reaction of the
propargylic alcohol 1a with nitrone 2a in the presence of
5 mol % of PPh3AuNTf2 (Table 1).

14,15 It was found that
β-carboline 3a could be obtained in 40% yield at 100 �C in
CH3NO2 (Table 1, entry 1). Elevating the reaction tem-
perature to 150 �C did not improve the reaction, and 3a

was isolated in 24% yield (entry 2). Advantageously, the
use of 30 mol % of Sc(OTf)3 could enable the reaction
to proceed at 0 �C and improve the yield of 3a to 62%
(entry 4). Decreasing or increasing the amounts of the

Scheme 1. A New Strategy for the Synthesis of Dihydro-β-
carbolines

Figure 1. Representative examples of highly substituted
β-carboline alkaloids.

Table 1. Optimization of Reaction Conditions

a Isolated yields. bCompound 4 was also isolated in 18% yield as a
mixture of two isomers in the ratio of 2.4:1. c 4was isolated in 15% yield
as a mixture of two isomers in the ratio of 2.4:1. d In the absence of
molecular sieve. eComplicated reaction mixture.
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catalyst did not change the product yields significantly
(entries 3 and 5). Further studies revealed that the con-
jugate acid of the metal triflates, TfOH, also showed good
activities to afford 61% of 3a in CH3NO2 or 66% of 3a in
DCM (entries 6�7). In the latter case, a tetrasubstituted
alkene with two electron-withdrawing groups 4 was also
isolated in 18% yield. A catalytic amount (50 mol %) of
TfOH afforded a lower yield of 3a (57%, entry 8). In
the absence of molecular sieve, 3a was obtained in a lower
yield of 55% (entry 9). Other Brønsted acids, such as
TsOH 3H2O,MsOH, or CF3COOH,were less or not effec-
tive (entries 10�12). We chose Table 1, entry 7 as the
optimum conditions due to the lower cost of TfOH.
Having the optimized reaction conditions in hand,

we next examined the substrate scope with a range of
R-indolyl-bearing propargylic alcohols. As shown in
Scheme 2, a wide range of propargylic alcohols could be
converted into the desired β-carbolines in the presence of
1.0 equiv of TfOH. The use ofN-methyl-substituted indole
afforded the corresponding carboline 3b in 56% yield.

However, an N-Boc-protected substrate gave the product
3c in a low yield of 28%, possibly due to the instability of
the starting alcohol 1c under the acidic conditions. The
use of Sc(OTf)3 as a catalyst could improve the yield of 3c
to 45%. A heteroaryl group such as 2-furanyl as the R2

substituent afforded 51% of 3d. Alkyl substitution as R2

as in the case of tBu-substituted substrate 1e also worked
smoothly to give 3e in 46%yield.Next, we investigated the
substituent effects on the alkyne terminus (R3 group). Both
electron-rich (p-MeOC6H4) and electron-poor (p-NO2C6H4)
aryl substituentswere tolerated, furnishing the corresponding
β-carbolines 3f and 3g in 75% and 42% yields, respectively.
The results indicated that the electron-withdrawing substitu-
ent on the aryl ring led to a lower yield of the product, which
might be due to the lower stability of the allenyl cation
intermediate formed in the initial step. A cyclopropyl-group
asR3was also suitable in this domino reaction, producing 3h
in 64% yield. However, a terminal alkyne only led to a 22%
yield of 3i. 5-MeO or 5-Br-substituted indole substrates were
also compatible for this transformation to deliver 3j�3k in
52�64% yields. The structure of 3 was unambiguously
confirmed by X-ray single-crystal analysis of 3b and 3c.16

The scope of nitrones was also tested using 1a as a
reactionpartner (Scheme 3). Itwas found that, for nitrones
bearing electron-deficient C-aryl groups (R4), such as the
p-BrC6H4 or p-CF3C6H4 group, the desired carbolines
3l�3m could be obtained in 67�70% yields. However,
when R4 is an electron-rich aryl group, product 4 was
isolated as a major product (vide infra). The N-aryl rings
bearing p-MeO, p-Me, p-Cl, and p-CO2Me substituents
reacted smoothlywith 1a to afford 3n�3q in 48�86%yields.
The use of N-Bn-substituted nitrone gave a low yield of 3r.

Scheme 2. Scope of Propargylic Alcoholsa

a Isolated yields. b30%Sc(OTf)3, 4ÅMS, inCH3NO3, rt, 15min. c1 h.

Scheme 3. Scope of Nitronesa

a Isolated yields. bRoom temperature, 3 h.

(16) See Supporting Information.
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Asmentioned above, when nitrones bearing an electron-
richC-aryl group was employed, product 4was isolated as
a major product. For example, when 1a was reacted with
nitrone 2i substituted with a strong electron-donating
methylenedioxy group on the C-aryl ring, 4 was formed
in87%yield,andanunexpected liberationofN-phenylbenzo-
[d][1,3]dioxol-5-amine 5was alsoobserved (Scheme4).The
results indicated that the migration of a C-aryl group to
the nitrogen atom occurred during the reaction. Similarly,
the use of nitrone 2j (R4 = p-tBuC6H4) and 2k (R4 =
;CHdCH;Ph) resulted in the formation of 4 in 83%
and 86% yields, respectively. The structure of 4 was con-
firmed by X-ray single-crystal analysis.16

Based on the above observations and the known pre-
cedents in literature, we propose the following reaction
mechanism for this reaction (Scheme 5). Initially, allenyl
cation 6 is generated via a Meyer�Schuster rearrange-
ment,17,18 which is attacked by nitrone 2 to give inter-
mediate 7. 7 undergoes cyclization via attack of the indolyl
moiety to the iminium cation leading to eight-membered
N�O heterocycle 9. 1,3-Rearrangement of 9with cleavage
of the N�O bond, similar to Baldwin rearrangement and
related reactions,19 delivers highly substituted β-carboline
3. When R4 is an alkenyl or electron-donating aryl group,

cleavage of the N�O bond from 7 is accompanied by
the migration of the R4 group to the nitrogen atom20 to
give iminium ion 11. Hydrolysis of 11 affords the
alkene product 4 and releases the amine 5. The results
also demonstrate that the electron-rich π-system tends
toward migration.20

In summary, we have developed a new procedure for the
synthesis of fully substituted 1,2-dihydro-β-carbolines via
Brønsted acid mediated cyclization of R-indolyl pro-
pargylic alcoholswithnitrones.The use of nitrones bearing
an electron-rich C-aryl ring or C-alkenyl group dramati-
cally switches the reaction pathway to afford tetrasubsti-
tuted alkenes and amines, which is assumed to proceed
through a rearrangement reaction involving N�O bond
cleavage and 1,2-migration. These results will be of im-
portance for the development of new reactionswith the use
of nitrones. Clarification of the reaction mechanism and
further application of this chemistry are in progress.
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Scheme 4. 1,2-Migration Reactions

Scheme 5. Possible Reaction Mechanism
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